
Automatic Programming Revisited
Part II: Synthesizer Algorithms

 Rastislav Bodik

University of California, Berkeley

Presenter
Presentation Notes
Why is it that Moore’s Law hasn’t yet revolutionized the job of the programmer? Compute cycles have been harnessed in testing, model checking, and autotuning but programmers still code with bare hands. Can their cognitive load be shared with a computer assistant? Automatic programming of the 80’s failed relying on too much AI. Later, synthesizers succeeded in deriving programs that were superbly efficient, even surprising, but these synthesizers first had to be formally taught considerable human insight about the domain. Using examples from algorithms, frameworks, and parallel programming, I will describe how the emerging synthesis community rethought automatic programming.The first innovation is to abandon automation, focusing instead on the intriguing new problem of how the human should communicate his incomplete ideas to her computerized algorithmic assistant, and how the assistant should talk back. As an example, I will describe programming with angelic oracles. The second line of innovation changes the algorithmics. Here, we have replaced deductive logic with constraint solving. Indeed, new synthesis is to its classical counterpart what model checking is to verification, and enjoys similar benefits: because algorithmic synthesis relies more on compute cycles and less on a formal expert, it is easier to adapt the synthesizer to a new domain.

Outline of Part II

Synthesizer algorithms

Future directions:

– concurrency
– domain-specific synthesis (dynamic programming)

Other partial program synthesizers

2

Synthesizers
Autobayes,
FFTW, Spiral

Compilers
OpenCL, NESL

What’s between compilers and synthesizers?

Our approach: help programmers auto-write code
without (us or them) having to invent a domain theory

3

p
er

fo
rm

an
ce

 o
f

co
d
e

general purpose domain-specific

Hand-optimized code
when a domain theory is

lacking, code is handwritten

4

Automating code writing

Presenter
Presentation Notes
Get the computer to program itself.

5

SKETCH: just two constructs

5

spec: int foo (int x) {
 return x + x;
 }

sketch: int bar (int x) implements foo {
 return x << ??;
 }

result: int bar (int x) implements foo {
 return x << 1;
 }

Presenter
Presentation Notes
say how much you gain by sketch, as opposed to trying all candidates from the language: benefit of insightwhat’s the benefit of smart solving, as opposed to iteration

It’s synthesis from partial programs

6

synthesizer
partial program

correctness criterion
completion

complete program

merge

The price SKETCH pays for generality

What are the limitations behind the magic?

Sketch doesn’t produce a proof of correctness:
SKETCH checks correctness of the synthesized program on
all inputs of up to certain size. The program could be
incorrect on larger inputs. This check is up to programmer.

Scalability:
Some programs are too hard to synthesize. We propose to
use refinement, which provides modularity and breaks the
synthesis task into smaller problems.

7

8

Counterexample-Guided Inductive Synthesis

(CEGIS)

9

How it works

Step 1: Turn holes into control inputs
Step 2: Translate spec and sketch to boolean functions
Step 3: Formulate synthesis as generalized SAT
Step 4: Solve with counterexample guided search
Step 5: Plug controls into the sketch

10

Making the candidate space explicit

A sketch syntactically describes a set of candidate programs.
– The ?? operator is modeled as a special input, called control:

What about recursion?

– calls are unrolled (inlined) => distinct ?? in each invocation
⇒ unbounded number of ?? in principle
– but we want to synthesize bounded programs, so unroll until you

found a correct program or run out of time

int f(int x) {
 … ?? … ?? …
}

int f(int x, int c1, c2) {
 … c1 … c2 …
}

Presenter
Presentation Notes
The first thing to note is that the sketch syntactically defines a set of candidate programs. Each completion of the sketch corresponds to a different candidate. We can associate each candidate with a set of integer values by replacing each hole in the program with a control parameter. Different assignments to these variables will correspond to different completions of the sketch.The trick is to search these space of vectors efficiently for one that leads to a correct implementation. A naïve search will take us nowhere; even if each validation were to take one second, it would take us three years to validate a space with 10^8 candidates.So we have to be smarter, and the way we are going to be smarter is by using inductive synthesis. So lets see how this works in the sequential setting.

11

How it works

Step 1: Turn holes into control inputs
Step 2: Translate spec and sketch to boolean functions
Step 3: Formulate synthesis as generalized SAT
Step 4: Solve with counterexample guided search
Step 5: Plug controls into the sketch

Must first create a bounded program

Bounded program:
– executes in bounded number of steps

One way to bound a program:
– bound the size of the input, and
– work with programs that always terminate

12

13

Ex : bit population count.
int pop (bit[W] x) {
 int count = 0;
 for(int i=0; i<W; i++)
 if (x[i])
 count++;
 return count;
}

x count 0 0 0 0 one 0 0 0 1

+

mux

count

+

count

mux

+

count

+

count

mux

mux

F(x) =

Presenter
Presentation Notes
Kill numbers in the title. State that W=4.

14

How it works

Step 1: Turn holes into control inputs
Step 2: Translate spec and sketch to boolean functions
Step 3: Formulate synthesis as generalized SAT
Step 4: Solve with counterexample guided search
Step 5: Plug controls into the sketch

Putting together sketch and spec

15

=

c
x

16

Sketch synthesis is constraint satisfaction

Synthesis reduces to solving this satisfiability problem
– synthesized program is determined by c

Quantifier alternation is challenging. Our idea is to
turn to inductive synthesis

16

spec(x) = sketch(x, c) c. x.

A E

17

How it works

Step 1: Turn holes into control inputs
Step 2: Translate spec and skretch to boolean functions
Step 3: Formulate synthesis as generalized SAT
Step 4: Solve with counterexample guided search
Step 5: Plug controls into the sketch

18

Inductive Synthesis

Synthesize a program from a set of input-output observations

Some history

– Algorithmic debugging (Shapiro 1982)
– Inductive logic programming (Muggleton 1991)
– Programming by example (e.g. Lau 2001)

Three big issues

– Convergence: How do you know your solution generalizes?
– Suitable observations: Where to obtain them?
– Efficiency: Computing a candidate correct on a few observations is

still hard

19

CounterExample –Guided Inductive Synthesis

Inductive Synthesizer

buggy

candidate implementation

add a (bounded) counterexample input

succeed

fail

fail

observation set E

ok
verifier/checker

Your verifier/checker goes here

 compute candidate
implementation from
concrete inputs.

The CEGIS algorithm:

Inductive synthesis step implemented with a SAT solver

20

CEGIS: Summary

Inductive synthesizer could be adversarial
– so we constrain it to space of candidates described by the sketch

Finding convergence (is resulting program correct?)

– we charge a checker with detecting convergence

Counterexamples make good empirical observations
– new counterexample covers a new “corner case”

21

Convergence

Example: remove an element from a doubly linked list.
 void remove(list l, node n){

 if (cond(l,n)) { assign(l, n); }
 if (cond(l,n)) { assign(l, n); }
 if (cond(l,n)) { assign(l, n); }
 if (cond(l,n)) { assign(l, n); }
}

int N = 6;
void test(int p){
 nodes[N] nodes;
 list l;
 initialize(l, nodes); //… add N nodes to list
 remove(l, nodes[p]);
 checkList(nodes, l, p);
}

22

Ex: Doubly Linked List Remove

Counterexamples

p = 3
void remove(list l, node n)
{
 if(n.prev != l.head)
 n.next.prev = n.prev;

 if(n.prev != n.next)
 n.prev.next = n.next;

}

23

Ex: Doubly Linked List Remove

Counterexamples

p = 3

p = 0

void remove(list l, node n)
{
 if(n.prev != null)
 n.next.prev = n.prev;

 if(l.head == n)
 l.head = n.next;

 l.tail = l.tail;

 if(l.head!=n.next)
 n.prev.next = n.next;
}

24

Ex: Doubly Linked List Remove

Counterexamples

p = 3

p = 0
p = 5

void remove(list l, node n)
{
 if(n.prev == null)
 l.head = n.next;

 if(n.next == null)
 l.tail = n.prev;

 if(n.next != l.head)
 n.prev.next = n.next;

 if(n.next != null)
 n.next.prev = n.prev;
}

Process takes < 1 second

25

Synthesis as generalized SAT
• The sketch synthesis problem is an instance of 2QBF:

• Counter-example driven solver:

I = {}
x = random()
do
 I = I U {x}
 c = synthesizeForSomeInputs(I)
 if c = nil then exit(“buggy sketch'')
 x = verifyForAllInputs(c) // x: counter-example
while x != nil
return c

S(x1, c)=F(x1) & … & S(xk, c)=F(xk)
I ={ x1, x2, …, xk }

S(x, c) != F(x)

spec(x) = sketch(x, c) c. x.

A E

26

How it works

Step 1: Turn holes into control inputs
Step 2: Translate spec and sketch to boolean functions
Step 3: Formulate synthesis as generalized SAT
Step 4: Solve with counterexample guided search
Step 5: Plug controls into the sketch

Exhaustive search not scalable

Option 0: Exploring all programs in the language
– for the concurrent list: space of about 1030 candidates
– if each candidate tested in 1 CPU cycle: ~age of universe

Option 1: Reduce candidate space with a sketch
– concurrent list sketch: candidate space goes down to 109
– 1sec/validation ==> about 10-100 days (assuming that the

space contains 100-1000 correct candidates)
– but our spaces are sometimes 10800

Option 2: Find a correct candidate with CEGIS
– concurrent list sketch: 1 minute (3 CEGIS iterations)

27

Number of counterexample vs. log(C)

28

C = size of candidate space = exp(bits of controls)

29 29 log(C)

Number of counterexample vs. log(C)

C = size of candidate space = exp(bits of controls)

C = 102400

Synthesis of Concurrent Programs

30

31

CEGIS for Concurrent Programs

Inductive Synthesizer

buggy

candidate implementation
succeed

fail

fail

observation set E

ok
Automated Validation

Your verifier/checker goes here

• Derive candidate
implementation from
counterexample traces

Concurrent

counterexample trace

SPIN

Inductive Synthesizer

• Derive candidate
implementation from
concrete inputs.

counterexample input

Sequential

Presenter
Presentation Notes
First, we need a validation procedure which understands concurrency. In our case we use the bounded model checker SPIN.But the biggest problem is that the counterexample is no longer an input, but a trace showing a bug with a specific thread interleaving. The problem with these counterexamples is that, unlike inputs, traces are very specific to the particular candidate that produced them.So the inductive synthesizer is left with the task of producing a candidate implementation that avoids the bugs exposed by traces from several different candidate implementations.

Synthesis of Dynamic Programming

32

Dynamic Programming
Compute O(2n) algorithms in O(nk) time

Example: fib(n)

33

Presenter
Presentation Notes
Bigger font for node labels would help.

Challenges in DP algorithm design

The divide problem: Suitable sub-problems often
not stated in the original problem. We may need to
invent different subproblems.

The conquer problem: Solve the problem from
subproblems by formulate new recurrences over
discovered subproblems.

Presenter
Presentation Notes
Let’s find a nice way to exploit linear_mss for showing what the new subproblem(s) are.

Maximal Independent Sum (MIS)

Given an array of positive integers, find a non-
consecutive selection that returns the best sum
and return the best sum.

Examples:

 mis([4,2,1,4]) = 8
 mis([1,3,2,4]) = 7

35

Presenter
Presentation Notes
“Alternative” means “nonconsecutive” ? The latter seems clearer to me.

Exponential Specification for MIS

The user can define a specification as an clean
exponential algorithm:

mis(A):
 best = 0
 forall selections:
 if legal(selection):
 best = max(best, eval(selection, A))
 return best

37

Sketch = “shape” of the algorithm

38

def linear_mis(A):
 tmp1 = array()
 tmp2 = array()
 tmp1[0] = initialize1()
 tmp2[0] = initialize2()
 for i from 1 to n:
 tmp1 = prop1(tmp1[i-1],tmp2[i-1],A[i-1])
 tmp2 = prop2(tmp1[i-1],tmp2[i-1],A[i-1])
 return term(tmp1[n],tmp2[n])

Presenter
Presentation Notes
Too busy. Smaller font for the example to create more space? <KILL>

Synthesize propagation functions

def prop (x,y,z) :=
 switch (??)
 case 0: return x
 case 1: return y
 case 2: return z
 case 3: return unary(prop(x,y,z))
 ...
 case r: return binary(prop(x,y,z),
 prop(x,y,z))

39

Presenter
Presentation Notes
Some background text is needed to motivate the template. Also we need to show its advantages in terms of “every programmer can write a template”.I think I broke a figure here. Please check and fix.

MIS: The synthesized algorithm

40

linear_mis(A):
 tmp1 = array()
 tmp2 = array()
 tmp1[0] = 0
 tmp2[0] = 0
 for i from 1 to n:
 tmp1[i] = tmp2[i-1] + A[i-1]
 tmp2[i] = max(tmp1[i-1],tmp2[i-1])
 return max(tmp1[n],tmp2[n])

Presenter
Presentation Notes
Too busy. Smaller font for the example to create more space? <KILL>

A guy walks into a Google Interview …

Given an array of integers A=[a1, a2, ..., an],
return B=[b1, b2, ... , bn]
such that: bi = a1 + ... + an - ai

Time complexity must be O(n)

Can’t use subtraction

42

Presenter
Presentation Notes
Tell this as a story: “Imagine you walk into this Google’s interviewers office. …”You can make math letters italics. As a math guy, you will be interested in TexPoint. Check it out. http://texpoint.necula.org/Try to avoid breaking lines into two lines. Reword so that most bullets form either a single line or a nice paragraph.Example of rewording	We'll show how this problem can be solved with our synthesizer.	We’ll solve this problem with our synthesizer.BTW, this sentence need not really appear on the slide.

43

Google Interview Problem: Solution

puzzle(A):
 B = template1(A)
 C = template2(A,B)
 D = template3(A,B,C)
 return D

template1(A):
 tmp1 = array()
 tmp1[0] = 0
 for i from 1 to n-1:
 tmp1[i] = tmp[i-1]+A[n-1]
 return tmp1

template2(A,B):
 tmp2 = array()
 tmp2[n-1] = 0
 for i from 1 to n-1:
 tmp2[n-i-1]
 = tmp2[n-i]+A[n-i]

template3(A,B,C):
 tmp3 = array()
 for i from 0 to n-1:
 tmp3[i] = B[i] + C[i]
 return tmp3

Presenter
Presentation Notes
Let’s highlight how this algorithm is a composition of the subalgorithms. Color them, perhaps.Remind advantages of being able to step outside the domain (FOR) by playing with the synthesizer.

aLisp

[Andre, Bhaskara, Russell, … 2002]

aLisp: learning with partial programs

Problem:
– implementing AI game opponents (state explosion)
– ML can’t efficiently learn how agent should behave
– programmers take months to implement a decent player

Solution:
– programmer supplies a skeleton of the intelligent agent
– ML fills in the details based on a reward function

Synthesizer:
– hierarchical reinforcement learning

45

Presenter
Presentation Notes
“Learning the agent” “learn the function that drives the agent’s decisions” (check their paper)

What’s in the partial program?

Strategic decisions, for example:
– first train a few peasant
– then, send them to collect resources (wood, gold)
– when enough wood, reassign peasants to build barracks
– when barracks done, train footmen
– better to attack with groups of footmen rather than send

a footman to attack as soon as he is trained

 [from Bhaskara et al IJCAI 2005]

46

Fragment from the aLisp program
(defun single-peasant-top ()
 (loop do
 (choose ’((call get-gold) (call get-wood)))))

(defun get-wood ()
 (call nav (choose *forests*))
 (action ’get-wood)
 (call nav *home-base-loc*)
 (action ’dropoff))

(defun nav (l)
 (loop until (at-pos l) do
 (action (choose ’(N S E W Rest)))))

47

this.x > l.x then go West
check for conflicts
…

Presenter
Presentation Notes
TODO: Describe the language of learnable functions. Say who the author of the langauge is? Syntehsizer writer? Alisp programmer?say how much this reduces the state space

It’s synthesis from partial programs

48

synthesizer
partial program

correctness criterion
completion

complete program

merge

SKETCH

49

SAT-based
inductive

synthesizer sketch

ref implementation
hole values

Presenter
Presentation Notes
partial program: 	algorithmic insightcompletion: 	mechanics

aLisp

50

hierarchical
reinforcement

learning aLisp partial program

reward function learnt choice
functions

Presenter
Presentation Notes
partial program: 	strategycompletion: 	tactics

First problem with partial programming

Where does specification of correctness come from?
Can it be developed faster than the program itself?

Unit tests (input,output pairs) sometimes suffice.

Next two projects go in the direction of saying even less.

51

SMARTedit*

[Lau, Wolfman, Domingos, Weld 2000]

Presenter
Presentation Notes
TODO: explain the footnote

SMARTedit*

Problem:
– creation of editor macros by non-programmers

Solution:
– user demonstrates the steps of the desired macro
– she repeats until the learnt macro is unambiguous
– unambiguous = all plausible macros transform the

provided input file in the same way

Solver:
– version space algebra

53

An editing task: EndNote to BibTex
%0 Journal Article
%1 4575
%A ^Richard C. Waters
%T The Programmer's Apprentice: A Session with KBEmacs
%J IEEE Trans. Softw. Eng.
%@ 0098-5589
%V 11
%N 11
%P 1296-1320
%D 1985
%R http://dx.doi.org/10.1109/TSE.1985.231880
%I IEEE Press

54

@article{4575,
 author = {Waters, Richard C.},
 title = {The Programmer's Apprentice: A Session with KBEmacs},
 journal = {IEEE Trans. Softw. Eng.},
 volume = {11}, number = {11}, year = {1985},
 issn = {0098-5589},
 pages = {1296--1320},
 doi = {http://dx.doi.org/10.1109/TSE.1985.231880},
 publisher = {IEEE Press}, address = {Piscataway, NJ, USA},
}

Demonstration = sequence of program states:
1) cursor in (0,0) buffer = “%0 …” clipboard = “”
2) cursor in ^ buffer = “%0 …” clipboard = “”
3) …

Desired macro:
 move(to after string “%A “)
 …

Version space = space of candidate macros

Version space expressed in SKETCH (almost):

#define location {| wordOffset(??) | rowCol(??,??)
 | prefix(“??”) | … |}

repeat ?? times {
 switch(??) {
 0: move(location)
 1: insert({| “??” | indent(??,”??”) |}))
 2: cut()
 3: copy()
 …
 }
} 55

Version Space for SMARTedit

56

SMARTedit*

57

version space
algebra

macro template

demonstration(s) set of macro
parameters

input file run the macro

completed macro(s)

processed file

Prospector

[Mandelin, Bodik, Kimelman 2005]

59

IFile file = …
ICompilationUnit cu = JavaCore.createCompilationUnitFrom(file);
ASTNode node = AST.parseCompilationUnit(cu, false);

Software reuse: the reality

Using Eclipse 2.1, parse a Java file into an AST

IFile file = …

ASTNode node = ?

Productivity < 1 LOC/hour Why so low?
1. follow expected design? two levels of file handlers
2. class member browsers? two unknown classes used
3. grep for ASTNode? parser returns subclass of ASTNode

IFile file = …
ICompilationUnit cu = JavaCore.createCompilationUnitFrom(file);
ASTNode node = AST.parseCompilationUnit(cu, false);

IFile file = …
ICompilationUnit cu = JavaCore.createCompilationUnitFrom(file);
ASTNode node = AST.parseCompilationUnit(cu, false);

IFile file = …
ICompilationUnit cu = JavaCore.createCompilationUnitFrom(file);
ASTNode node = AST.parseCompilationUnit(cu, false);

Prospector

Problem:
APIs have 100K methods. How to code with the API?

Solution:
Observation 1: many reuse problems can be described with

a have-one-want-one query q=(h,w), where h,w are static
types, eg ASTNode.

Observation 2: most queries can be answered with a
jungloid, a chain of single-parameter “calls”. Multi-
parameter calls can be decomposed into jungloids.

Synthesizer:
Jungloid is a path in a directed graph of types+methods.
Observation 3: shortest path more likely the desired one

60

61

Integrating synthesis with IDEs

• How do we present jungloid synthesis to programmers?
• Integrate with IDE “code completion”

want type

have types

Queries: (IFile, ASTNode)
 (IEditorPart, ASTNode)

Presenter
Presentation Notes
Summarize the results and user studies.

Are these two also about partial programs?

62

synthesizer
partial program

correctness criterion
completion

complete program

merge

SMARTedit*

63

version space
algebra

macro template

demonstration(s) set of macro
parameters

input file run the macro

completed macro(s)

processed file

Prospector

64

shortest path
search

jungloid template + API

have,want query ranked
jungloids

user selection
desired
jungloid

Presenter
Presentation Notes
TODO: type safety is part of the partial program

Turn partial synthesis around?

65

synthesizer
partial program

correctness criterion
completion

synthesizer
angelic partial program

correctness check angelic
demonstration

synthesizer
partial program

demonstrations
completion

Synthesis with partial programs

Partial programs can communicate programmer insight
Once you understand how to write a program,
get someone else to write it. Alan Perlis, Epigram #27

Suitable synthesis algorithm completes the mechanics.

End-user programming, API-level coding are also
decomposable into partial program and completion.

66

Presenter
Presentation Notes
Sometimes insight is the generic recipeThe mechanics is sometimes is the tedious.

Acknowledgements

UC Berkeley
Gilad Arnold
Shaon Barman
Prof. Ras Bodik
Prof. Bob Brayton
Joel Galenson
Sagar Jain
Chris Jones
Evan Pu

67

MIT
Prof. Armando Solar-Lezama
Rishabh Singh
Kuat Yesenov
Jean Yung
Zhiley Xu

IBM
Satish Chandra
Kemal Ebcioglu
Rodric Rabbah
Vijay Saraswat
Vivek Sarkar

Casey Rodarmor
Prof. Koushik Sen
Prof. Sanjit Seshia
Lexin Shan
Saurabh Srivastava
Liviu Tancau
Nicholas Tung

	Automatic Programming Revisited�Part II: Synthesizer Algorithms��
	Outline of Part II
	What’s between compilers and synthesizers?
	Slide Number 4
	SKETCH: just two constructs
	It’s synthesis from partial programs
	The price SKETCH pays for generality
	Slide Number 8
	How it works
	Making the candidate space explicit
	How it works
	Must first create a bounded program
	Ex : bit population count.
	How it works
	Putting together sketch and spec
	Sketch synthesis is constraint satisfaction
	How it works
	Inductive Synthesis
	CounterExample –Guided Inductive Synthesis
	CEGIS: Summary
	Convergence
	Ex: Doubly Linked List Remove
	Ex: Doubly Linked List Remove
	Ex: Doubly Linked List Remove
	Synthesis as generalized SAT
	How it works
	Exhaustive search not scalable
	Number of counterexample vs. log(C)
	Number of counterexample vs. log(C)
	Synthesis of Concurrent Programs
	CEGIS for Concurrent Programs
	Synthesis of Dynamic Programming
	Dynamic Programming
	Challenges in DP algorithm design
	Maximal Independent Sum (MIS)
	Exponential Specification for MIS
	Sketch = “shape” of the algorithm
	Synthesize propagation functions
	MIS: The synthesized algorithm
	A guy walks into a Google Interview …
	Google Interview Problem: Solution
	aLisp��[Andre, Bhaskara, Russell, … 2002]
	aLisp: learning with partial programs
	What’s in the partial program?
	Fragment from the aLisp program
	It’s synthesis from partial programs
	SKETCH
	aLisp
	First problem with partial programming
	SMARTedit*��[Lau, Wolfman, Domingos, Weld 2000]
	SMARTedit*
	An editing task: EndNote to BibTex
	Version space = space of candidate macros
	Version Space for SMARTedit
	SMARTedit*
	Prospector��[Mandelin, Bodik, Kimelman 2005]
	Software reuse: the reality
	Prospector
	Integrating synthesis with IDEs
	Are these two also about partial programs?
	SMARTedit*
	Prospector
	Turn partial synthesis around?
	Synthesis with partial programs
	Acknowledgements

