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Presenter
Presentation Notes
Why is it that Moore’s Law hasn’t yet revolutionized the job of the programmer?   Compute cycles have been harnessed in testing, model checking, and autotuning but programmers still code with bare hands.  Can their cognitive load be shared with a computer assistant?  Automatic programming of the 80’s failed relying on too much AI.  Later, synthesizers succeeded in deriving programs that were superbly efficient, even surprising, but these synthesizers first had to be formally taught considerable human insight about the domain. Using examples from algorithms, frameworks, and parallel programming, I will describe how the emerging synthesis community rethought automatic programming.The first innovation is to abandon automation, focusing instead on the intriguing new problem of how the human should communicate his incomplete ideas to her computerized algorithmic assistant, and how the assistant should talk back.  As an example, I will describe programming with angelic oracles.  The second line of innovation changes the algorithmics.  Here, we have replaced deductive logic with constraint solving.  Indeed, new synthesis is to its classical counterpart what model checking is to verification, and enjoys similar benefits: because algorithmic synthesis relies more on compute cycles and less on a formal expert, it is easier to adapt the synthesizer to a new domain. 



Outline of Part II 

Synthesizer algorithms 
 
Future directions: 

– concurrency 
– domain-specific synthesis (dynamic programming) 

 
Other partial program synthesizers 
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Synthesizers 
Autobayes,  
FFTW, Spiral 

Compilers 
OpenCL, NESL 

What’s between compilers and synthesizers? 

Our approach: help programmers auto-write code 
without (us or them) having to invent a domain theory 
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Hand-optimized code 
when a domain theory is  

lacking, code is handwritten  
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Automating code writing 

Presenter
Presentation Notes
Get the computer to program itself. 
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SKETCH: just two constructs 
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spec:    int foo (int x) {  
      return x + x;  
  }  

sketch:   int bar (int x) implements foo { 
          return x << ??; 
  }  

result:    int bar (int x) implements foo { 
      return x << 1; 
  }  

Presenter
Presentation Notes
say how much you gain by sketch, as opposed to trying all candidates from the language: benefit of insightwhat’s the benefit of smart solving, as opposed to iteration



It’s synthesis from partial programs 
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synthesizer 
partial program 

correctness criterion 
completion 

complete program 

merge 



The price SKETCH pays for generality 

What are the limitations behind the magic? 
 

Sketch doesn’t produce a proof of correctness: 
SKETCH checks correctness of the synthesized program on 
all inputs of up to certain size.  The program could be 
incorrect on larger inputs.  This check is up to programmer. 
 

Scalability: 
Some programs are too hard to synthesize.  We propose to 
use refinement, which provides modularity and breaks the 
synthesis task into smaller problems. 
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Counterexample-Guided Inductive Synthesis 

(CEGIS) 
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How it works 

Step 1: Turn holes into control inputs 
Step 2: Translate spec and sketch to boolean functions 
Step 3: Formulate synthesis as generalized SAT 
Step 4: Solve with counterexample guided search 
Step 5: Plug controls into the sketch 
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Making the candidate space explicit 

A sketch syntactically describes a set of candidate programs. 
– The ?? operator is modeled as a special input, called control: 

 

 
 
 
 
What about recursion? 

– calls are unrolled (inlined) => distinct ?? in each invocation  
⇒  unbounded number of ?? in principle 
– but we want to synthesize bounded programs, so unroll until you 

found a correct program or run out of time 

int f(int x) { 
 … ?? … ?? … 
}  

int f(int x, int c1, c2) { 
    … c1 … c2 … 
} 

Presenter
Presentation Notes
The first thing to note is that the sketch syntactically defines a set of candidate programs. Each completion of the sketch corresponds to a different candidate. We can associate each candidate with a set of integer values by replacing each hole in the program with a control parameter. Different assignments to these variables will correspond to different completions of the sketch.The trick is to search these space of vectors efficiently for one that leads to a correct implementation. A naïve search will take us nowhere; even if each validation were to take one second, it would take us three years to validate a space with 10^8 candidates.So we have to be smarter, and the way we are going to be smarter is by using inductive synthesis. So lets see how this works in the sequential setting.
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How it works 

Step 1: Turn holes into control inputs 
Step 2: Translate spec and sketch to boolean functions 
Step 3: Formulate synthesis as generalized SAT 
Step 4: Solve with counterexample guided search 
Step 5: Plug controls into the sketch 



Must first create a bounded program 

Bounded program: 
– executes in bounded number of steps 

 

One way to bound a program:   
– bound the size of the input, and  
– work with programs that always terminate 
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Ex : bit population count.       
int pop (bit[W] x) { 
    int count = 0;  
    for(int i=0; i<W; i++) 
        if (x[i])  
            count++; 
    return count; 
} 

x count 0 0 0 0 one 0 0 0 1 

+ 

mux 

count 

+ 

count 

mux 

+ 

count 

+ 

count 

mux 

mux 

F(x) =  

Presenter
Presentation Notes
Kill numbers in the title. State that W=4.
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How it works 

Step 1: Turn holes into control inputs 
Step 2: Translate spec and sketch to boolean functions 
Step 3: Formulate synthesis as generalized SAT 
Step 4: Solve with counterexample guided search 
Step 5: Plug controls into the sketch 



Putting together sketch and spec 
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Sketch synthesis is constraint satisfaction 

 

Synthesis reduces to solving this satisfiability problem  
– synthesized program is determined by c 

 
 
 
 
 
 
 

Quantifier alternation  is challenging.  Our idea is to 
turn to inductive synthesis 
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spec(x)   =   sketch(x, c) c.             x. 

A  E 
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How it works 

Step 1: Turn holes into control inputs 
Step 2: Translate spec and skretch to boolean functions 
Step 3: Formulate synthesis as generalized SAT 
Step 4: Solve with counterexample guided search 
Step 5: Plug controls into the sketch 
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Inductive Synthesis 

Synthesize a program from a set of input-output observations 
 
Some history 

– Algorithmic debugging (Shapiro 1982) 
– Inductive logic programming (Muggleton 1991) 
– Programming by example (e.g. Lau 2001) 

 
Three big issues 

– Convergence: How do you know your solution generalizes? 
– Suitable observations: Where to obtain them? 
– Efficiency: Computing a candidate correct on a few observations is 

still hard 
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CounterExample –Guided Inductive Synthesis 

Inductive Synthesizer 
 
 
 
  

 

buggy  

candidate implementation 

add  a (bounded) counterexample input 

succeed 

fail 

fail 

observation set E 

ok 
verifier/checker 

 
 
 

Your verifier/checker goes here 

   compute candidate 
implementation from 
concrete inputs. 

The CEGIS algorithm: 

Inductive synthesis step implemented with a SAT solver 
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CEGIS:  Summary 

Inductive synthesizer could be adversarial 
– so we constrain it to space of candidates described by the sketch 

 
Finding convergence (is resulting program correct?) 

– we charge a checker with detecting convergence 
 

Counterexamples make good empirical observations 
– new counterexample covers a new “corner case” 
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Convergence 

Example: remove an element from a doubly linked list. 
 void remove(list l, node n){  

   if (cond(l,n)) { assign(l, n); }   
   if (cond(l,n)) { assign(l, n); }   
   if (cond(l,n)) { assign(l, n); }   
   if (cond(l,n)) { assign(l, n); }   
} 

int N = 6; 
void test(int p){  
    nodes[N] nodes; 
    list l; 
    initialize(l, nodes);   //… add N nodes to list 
    remove(l, nodes[p]); 
    checkList(nodes, l, p); 
} 
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Ex: Doubly Linked List Remove 

Counterexamples 

p = 3  
void remove(list l, node n) 
{ 
  if(n.prev != l.head) 
    n.next.prev = n.prev; 
   
  if(n.prev != n.next) 
    n.prev.next = n.next; 
   
} 
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Ex: Doubly Linked List Remove 

Counterexamples 

p = 3 

p = 0 

void remove(list l, node n) 
{ 
  if(n.prev != null) 
    n.next.prev = n.prev; 
   
  if(l.head == n) 
    l.head = n.next; 
 
  l.tail = l.tail; 
 
  if(l.head!=n.next) 
    n.prev.next = n.next; 
} 
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Ex: Doubly Linked List Remove 

Counterexamples 

p = 3 

p = 0 
p = 5 

void remove(list l, node n) 
{ 
  if(n.prev == null) 
     l.head = n.next; 
   
  if(n.next == null) 
    l.tail = n.prev; 
   
  if(n.next != l.head) 
    n.prev.next = n.next; 
   
  if(n.next != null) 
    n.next.prev = n.prev; 
} 

Process takes < 1 second 
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Synthesis as generalized SAT 
• The sketch synthesis problem is an instance of 2QBF:  

 
   

 
• Counter-example driven solver: 

 
I = {} 
x = random() 
do 
 I = I U {x} 
 c = synthesizeForSomeInputs(I) 
 if c = nil then exit(“buggy sketch'') 
 x = verifyForAllInputs(c)           // x: counter-example 
while x != nil 
return c 

S(x1, c)=F(x1) & … & S(xk, c)=F(xk)  
I ={ x1, x2, …, xk } 

 

S(x, c) != F(x) 
 

spec(x)   =   sketch(x, c) c.             x. 

A  E 
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How it works 

Step 1: Turn holes into control inputs 
Step 2: Translate spec and sketch to boolean functions 
Step 3: Formulate synthesis as generalized SAT 
Step 4: Solve with counterexample guided search 
Step 5: Plug controls into the sketch 



Exhaustive search not scalable 

Option 0: Exploring all programs in the language 
– for the concurrent list: space of about 1030 candidates 
– if each candidate tested in 1 CPU cycle: ~age of universe 

Option 1: Reduce candidate space with a sketch 
– concurrent list sketch: candidate space goes down to 109 
– 1sec/validation  ==> about 10-100 days (assuming that the 

space contains 100-1000 correct candidates) 
– but our spaces are sometimes 10800 

Option 2: Find a correct candidate with CEGIS 
– concurrent list sketch: 1 minute (3 CEGIS iterations) 
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Number of counterexample vs. log(C) 
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C = size of candidate space = exp(bits of controls) 



29 29 log(C) 

Number of counterexample vs. log(C) 

C = size of candidate space = exp(bits of controls) 

C  = 102400 



Synthesis of Concurrent Programs 
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CEGIS for Concurrent Programs 

Inductive Synthesizer 
 
 
 
  
 

buggy  

candidate implementation 
succeed 

fail 

fail 

observation set E 

ok 
Automated Validation 

 
 
 

Your verifier/checker  goes here 

• Derive candidate 
implementation from 
counterexample traces 

Concurrent 

counterexample  trace 

SPIN 

Inductive Synthesizer 
 
 
 
  
 

• Derive candidate 
implementation from 
concrete inputs. 

counterexample input 

Sequential 

Presenter
Presentation Notes
First, we need a validation procedure which understands concurrency. In our case we use the bounded model checker SPIN.But the biggest problem is that the counterexample is no longer an input, but a trace showing a bug with a specific thread interleaving. The problem with these counterexamples is that, unlike inputs, traces are very specific to the particular candidate that produced them.So the inductive synthesizer is left with the task of producing a candidate implementation that avoids the bugs exposed by traces from several different candidate implementations.



Synthesis of Dynamic Programming 
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Dynamic Programming 
Compute O(2n) algorithms in O(nk) time 

Example: fib(n) 
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Presenter
Presentation Notes
Bigger font for node labels would help.



Challenges in DP algorithm design 

The divide problem:  Suitable sub-problems often 
not stated in the original problem.  We may need to 
invent different subproblems. 
 
The conquer problem: Solve the problem from 
subproblems by formulate new recurrences over 
discovered subproblems. 

Presenter
Presentation Notes
Let’s find a nice way to exploit linear_mss for showing what the new subproblem(s) are.



Maximal Independent Sum (MIS) 

 
Given an array of positive integers, find a non-
consecutive selection that returns the best sum 
and return the best sum. 
 
Examples: 
 
 mis([4,2,1,4]) = 8 
 mis([1,3,2,4]) = 7 
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Presenter
Presentation Notes
“Alternative” means “nonconsecutive” ?  The latter seems clearer to me.



Exponential Specification for MIS 

The user can define a specification as an clean 
exponential algorithm: 
 
mis(A): 
   best = 0 
   forall selections: 
      if legal(selection): 
         best = max(best, eval(selection, A)) 
   return best 
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Sketch = “shape” of the algorithm 
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def linear_mis(A): 
  tmp1 = array() 
  tmp2 = array() 
  tmp1[0] = initialize1() 
  tmp2[0] = initialize2() 
  for i from 1 to n: 
    tmp1 = prop1(tmp1[i-1],tmp2[i-1],A[i-1]) 
    tmp2 = prop2(tmp1[i-1],tmp2[i-1],A[i-1]) 
  return term(tmp1[n],tmp2[n]) 

Presenter
Presentation Notes
Too busy.  Smaller font for the example to create more space? <KILL>



Synthesize propagation functions 

def prop (x,y,z) := 
    switch (??) 
    case 0: return x 
    case 1: return y 
    case 2: return z 
    case 3: return unary(prop(x,y,z)) 
    ... 
    case r: return binary(prop(x,y,z), 
                          prop(x,y,z)) 
    

39 

Presenter
Presentation Notes
Some background text is needed to motivate the template.  Also we need to show its advantages in terms of “every programmer can write a template”.I think I broke a figure here.  Please check and fix.



MIS: The synthesized algorithm 

40 

linear_mis(A): 
  tmp1 = array() 
  tmp2 = array() 
  tmp1[0] = 0 
  tmp2[0] = 0 
  for i from 1 to n: 
    tmp1[i] = tmp2[i-1] + A[i-1] 
    tmp2[i] = max(tmp1[i-1],tmp2[i-1]) 
  return max(tmp1[n],tmp2[n]) 

Presenter
Presentation Notes
Too busy.  Smaller font for the example to create more space? <KILL>



A guy walks into a Google Interview … 

 
Given an array of integers A=[a1, a2, ..., an],  
return B=[b1, b2, ... , bn] 
such that: bi = a1 + ... + an - ai 
 
Time complexity must be O(n) 

 
Can’t use subtraction 
 

42 

Presenter
Presentation Notes
Tell this as a story: “Imagine you walk into this Google’s interviewers office. …”You can make math letters italics.  As a math guy, you will be interested in TexPoint. Check it out. http://texpoint.necula.org/Try to avoid breaking lines into two lines.  Reword so that most bullets form either a single line or a nice paragraph.Example of rewording	We'll show how this problem can be solved with our synthesizer.	We’ll solve this problem with our synthesizer.BTW, this sentence need not really appear on the slide.
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Google Interview Problem: Solution 

puzzle(A): 
  B = template1(A) 
  C = template2(A,B) 
  D = template3(A,B,C) 
  return D 
 
template1(A): 
  tmp1 = array() 
  tmp1[0] = 0 
  for i from 1 to n-1: 
    tmp1[i] = tmp[i-1]+A[n-1] 
  return tmp1 

template2(A,B): 
  tmp2 = array() 
  tmp2[n-1] = 0 
  for i from 1 to n-1: 
    tmp2[n-i-1] 
          = tmp2[n-i]+A[n-i] 
 
template3(A,B,C): 
  tmp3 = array() 
  for i from 0 to n-1: 
    tmp3[i] = B[i] + C[i] 
  return tmp3 

Presenter
Presentation Notes
Let’s highlight how this algorithm is a composition of the subalgorithms.  Color them, perhaps.Remind advantages of being able to step outside the domain (FOR) by playing with the synthesizer.



aLisp 
 

[Andre, Bhaskara, Russell, … 2002] 



aLisp: learning with partial programs 

Problem:  
– implementing AI game opponents (state explosion) 
– ML can’t efficiently learn how agent should behave 
– programmers take months to implement a decent player 

Solution:  
– programmer supplies a skeleton of the intelligent agent 
– ML fills in the details based on a reward function 

Synthesizer:  
– hierarchical reinforcement learning 
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Presenter
Presentation Notes
“Learning the agent”  “learn the function that drives the agent’s decisions” (check their paper)



What’s in the partial program? 

Strategic decisions, for example:  
– first train a few peasant 
– then, send them to collect resources (wood, gold) 
– when enough wood, reassign peasants to build barracks 
– when barracks done, train footmen 
– better to attack with groups of footmen rather than send 

a footman to attack as soon as he is trained 
 

 
  [from Bhaskara et al IJCAI 2005] 
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Fragment from the aLisp program 
(defun single-peasant-top () 
 (loop do 
  (choose ’((call get-gold) (call get-wood))))) 
 
(defun get-wood () 
 (call nav (choose *forests*)) 
 (action ’get-wood) 
 (call nav *home-base-loc*) 
 (action ’dropoff)) 
 
(defun nav (l) 
 (loop until (at-pos l) do 
 (action (choose ’(N S E W Rest))))) 

47 

this.x > l.x then go West 
check for conflicts 
… 

Presenter
Presentation Notes
TODO: Describe the language of learnable functions.  Say who the author of the langauge is?  Syntehsizer writer?  Alisp programmer?say how much this reduces the state space



It’s synthesis from partial programs 

48 

synthesizer 
partial program 

correctness criterion 
completion 

complete program 

merge 



SKETCH 
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SAT-based 
inductive 

synthesizer sketch 

ref  implementation 
hole values 

Presenter
Presentation Notes
partial program: 	algorithmic insightcompletion: 	mechanics



aLisp 
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hierarchical 
reinforcement 

learning aLisp partial program 

reward function learnt choice  
functions 

Presenter
Presentation Notes
partial program: 	strategycompletion: 	tactics



First problem with partial programming 

 
Where does specification of correctness come from?  
Can it be developed faster than the program itself? 
 
Unit tests (input,output pairs) sometimes suffice. 
 
Next two projects go in the direction of saying even less. 
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SMARTedit* 
 

[Lau, Wolfman, Domingos, Weld 2000] 

Presenter
Presentation Notes
TODO: explain the footnote



SMARTedit* 

Problem:  
– creation of editor macros by non-programmers  

Solution:  
– user demonstrates the steps of the desired macro 
– she repeats until the learnt macro is unambiguous 
– unambiguous = all plausible macros transform the 

provided input file in the same way 

Solver:  
– version space algebra 

53 



An editing task: EndNote to BibTex 
%0 Journal Article  
%1 4575  
%A ^Richard C. Waters  
%T The Programmer's Apprentice: A Session with KBEmacs  
%J IEEE Trans. Softw. Eng.  
%@ 0098-5589      
%V 11       
%N 11  
%P 1296-1320  
%D 1985  
%R http://dx.doi.org/10.1109/TSE.1985.231880  
%I IEEE Press 
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@article{4575,  
 author = {Waters, Richard C.},  
 title = {The Programmer's Apprentice: A Session with KBEmacs},  
 journal = {IEEE Trans. Softw. Eng.},  
 volume = {11}, number = {11}, year = {1985},  
 issn = {0098-5589},  
 pages = {1296--1320},  
 doi = {http://dx.doi.org/10.1109/TSE.1985.231880},  
 publisher = {IEEE Press}, address = {Piscataway, NJ, USA},  
} 

Demonstration = sequence of program states:  
1) cursor in (0,0)   buffer = “%0 …” clipboard = “”  
2) cursor in ^  buffer = “%0 …”  clipboard = “” 
3) … 

 
Desired macro: 
 move(to after string “%A “) 
 … 



Version space = space of candidate macros 

Version space expressed in SKETCH (almost): 
 

#define location  {| wordOffset(??) | rowCol(??,??)  
                  | prefix(“??”)   |  … |} 
 
repeat ?? times { 
 switch(??) { 
 0:   move(location) 
 1:   insert({| “??” | indent(??,”??”) |})) 
 2:   cut() 
 3:   copy() 
      …  
 } 
} 55 



Version Space for SMARTedit 

56 



SMARTedit* 
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version space 
algebra 

macro template 

demonstration(s) set of macro  
parameters 

input file run the macro 

completed macro(s) 

processed file 



Prospector 
 

[Mandelin, Bodik, Kimelman  2005] 
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IFile file = … 
ICompilationUnit cu = JavaCore.createCompilationUnitFrom(file);  
ASTNode node = AST.parseCompilationUnit(cu, false);  

Software reuse: the reality 

Using Eclipse 2.1, parse a Java file into an AST 

IFile file = … 
 
ASTNode node = ? 

Productivity  <  1 LOC/hour                 Why so low? 
1. follow expected design? two levels of file handlers 
2. class member browsers? two unknown classes used 
3. grep for ASTNode? parser returns subclass of ASTNode 

IFile file = … 
ICompilationUnit cu = JavaCore.createCompilationUnitFrom(file);  
ASTNode node = AST.parseCompilationUnit(cu, false);  

IFile file = … 
ICompilationUnit cu = JavaCore.createCompilationUnitFrom(file);  
ASTNode node = AST.parseCompilationUnit(cu, false);  

IFile file = … 
ICompilationUnit cu = JavaCore.createCompilationUnitFrom(file);  
ASTNode node = AST.parseCompilationUnit(cu, false);  



Prospector 

Problem:  
APIs have 100K methods. How to code with the API? 

Solution: 
Observation 1: many reuse problems can be described with 

a have-one-want-one query q=(h,w), where h,w are static 
types, eg ASTNode. 

Observation 2: most queries can be answered with a 
jungloid, a chain of single-parameter “calls”.  Multi-
parameter calls can be decomposed into  jungloids. 

Synthesizer: 
Jungloid is a path in a directed graph of types+methods. 
Observation 3: shortest path more likely the desired one 

60 



61 

Integrating synthesis with IDEs 

• How do we present jungloid synthesis to programmers? 
• Integrate with IDE “code completion” 

want type 

have types 

Queries: (IFile, ASTNode) 
  (IEditorPart, ASTNode) 

Presenter
Presentation Notes
Summarize the results and user studies.



Are these two also about partial programs? 
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synthesizer 
partial program 

correctness criterion 
completion 

complete program 

merge 



SMARTedit* 
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version space 
algebra 

macro template 

demonstration(s) set of macro  
parameters 

input file run the macro 

completed macro(s) 

processed file 



Prospector 
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shortest path 
search 

jungloid template + API 

have,want query ranked  
jungloids 

user selection 
desired   
jungloid 

Presenter
Presentation Notes
TODO: type safety is part of the partial program



Turn partial synthesis around? 
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synthesizer 
partial program 

correctness criterion 
completion 

synthesizer 
angelic partial program 

correctness check angelic  
demonstration 

synthesizer 
partial program 

demonstrations 
completion 



Synthesis with partial programs 

Partial programs can communicate programmer insight 
Once you understand how to write a program,   
get someone else to write it.   Alan Perlis, Epigram #27 

 
Suitable synthesis algorithm completes the mechanics. 
 
End-user programming, API-level coding are also 
decomposable into partial program and completion. 

66 

Presenter
Presentation Notes
Sometimes insight is the generic recipeThe mechanics is sometimes is the tedious.
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